Copied to
clipboard

G = (C32×C9)⋊S3order 486 = 2·35

14th semidirect product of C32×C9 and S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C32⋊C96C6, (C32×C9)⋊14S3, C322D96C3, (C3×He3).13S3, C33.20(C3×S3), C33.31(C3⋊S3), C32.23C331C2, (C3×3- 1+2)⋊4S3, C32.3(He3⋊C2), C3.11(He3.4S3), (C3×C9).20(C3×S3), C32.39(C3×C3⋊S3), C3.4(C3×He3⋊C2), SmallGroup(486,149)

Series: Derived Chief Lower central Upper central

C1C3C32⋊C9 — (C32×C9)⋊S3
C1C3C32C33C32⋊C9C32.23C33 — (C32×C9)⋊S3
C32⋊C9 — (C32×C9)⋊S3
C1C3

Generators and relations for (C32×C9)⋊S3
 G = < a,b,c,d,e | a3=b3=c9=d3=e2=1, ab=ba, ac=ca, dad-1=ac3, ae=ea, bc=cb, dbd-1=bc3, be=eb, dcd-1=ab-1c, ece=c-1, ede=d-1 >

Subgroups: 524 in 99 conjugacy classes, 20 normal (13 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C3×C6, C3×C9, C3×C9, C3×C9, He3, 3- 1+2, C33, C33, C3×D9, C32⋊C6, C9⋊C6, S3×C32, C3×C3⋊S3, C32⋊C9, C32⋊C9, C32×C9, C3×He3, C3×3- 1+2, C322D9, C32×D9, C3×C32⋊C6, C3×C9⋊C6, C32.23C33, (C32×C9)⋊S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, He3⋊C2, C3×C3⋊S3, C3×He3⋊C2, He3.4S3, (C32×C9)⋊S3

Smallest permutation representation of (C32×C9)⋊S3
On 54 points
Generators in S54
(1 40 31)(2 41 32)(3 42 33)(4 43 34)(5 44 35)(6 45 36)(7 37 28)(8 38 29)(9 39 30)(10 24 53)(11 25 54)(12 26 46)(13 27 47)(14 19 48)(15 20 49)(16 21 50)(17 22 51)(18 23 52)
(1 43 28)(2 44 29)(3 45 30)(4 37 31)(5 38 32)(6 39 33)(7 40 34)(8 41 35)(9 42 36)(10 21 47)(11 22 48)(12 23 49)(13 24 50)(14 25 51)(15 26 52)(16 27 53)(17 19 54)(18 20 46)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 28 37)(2 32 44)(3 36 42)(4 31 40)(5 35 38)(6 30 45)(7 34 43)(8 29 41)(9 33 39)(10 21 53)(11 19 48)(12 26 52)(13 24 47)(14 22 51)(15 20 46)(16 27 50)(17 25 54)(18 23 49)
(1 49)(2 48)(3 47)(4 46)(5 54)(6 53)(7 52)(8 51)(9 50)(10 45)(11 44)(12 43)(13 42)(14 41)(15 40)(16 39)(17 38)(18 37)(19 32)(20 31)(21 30)(22 29)(23 28)(24 36)(25 35)(26 34)(27 33)

G:=sub<Sym(54)| (1,40,31)(2,41,32)(3,42,33)(4,43,34)(5,44,35)(6,45,36)(7,37,28)(8,38,29)(9,39,30)(10,24,53)(11,25,54)(12,26,46)(13,27,47)(14,19,48)(15,20,49)(16,21,50)(17,22,51)(18,23,52), (1,43,28)(2,44,29)(3,45,30)(4,37,31)(5,38,32)(6,39,33)(7,40,34)(8,41,35)(9,42,36)(10,21,47)(11,22,48)(12,23,49)(13,24,50)(14,25,51)(15,26,52)(16,27,53)(17,19,54)(18,20,46), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,37)(2,32,44)(3,36,42)(4,31,40)(5,35,38)(6,30,45)(7,34,43)(8,29,41)(9,33,39)(10,21,53)(11,19,48)(12,26,52)(13,24,47)(14,22,51)(15,20,46)(16,27,50)(17,25,54)(18,23,49), (1,49)(2,48)(3,47)(4,46)(5,54)(6,53)(7,52)(8,51)(9,50)(10,45)(11,44)(12,43)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,32)(20,31)(21,30)(22,29)(23,28)(24,36)(25,35)(26,34)(27,33)>;

G:=Group( (1,40,31)(2,41,32)(3,42,33)(4,43,34)(5,44,35)(6,45,36)(7,37,28)(8,38,29)(9,39,30)(10,24,53)(11,25,54)(12,26,46)(13,27,47)(14,19,48)(15,20,49)(16,21,50)(17,22,51)(18,23,52), (1,43,28)(2,44,29)(3,45,30)(4,37,31)(5,38,32)(6,39,33)(7,40,34)(8,41,35)(9,42,36)(10,21,47)(11,22,48)(12,23,49)(13,24,50)(14,25,51)(15,26,52)(16,27,53)(17,19,54)(18,20,46), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,28,37)(2,32,44)(3,36,42)(4,31,40)(5,35,38)(6,30,45)(7,34,43)(8,29,41)(9,33,39)(10,21,53)(11,19,48)(12,26,52)(13,24,47)(14,22,51)(15,20,46)(16,27,50)(17,25,54)(18,23,49), (1,49)(2,48)(3,47)(4,46)(5,54)(6,53)(7,52)(8,51)(9,50)(10,45)(11,44)(12,43)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,32)(20,31)(21,30)(22,29)(23,28)(24,36)(25,35)(26,34)(27,33) );

G=PermutationGroup([[(1,40,31),(2,41,32),(3,42,33),(4,43,34),(5,44,35),(6,45,36),(7,37,28),(8,38,29),(9,39,30),(10,24,53),(11,25,54),(12,26,46),(13,27,47),(14,19,48),(15,20,49),(16,21,50),(17,22,51),(18,23,52)], [(1,43,28),(2,44,29),(3,45,30),(4,37,31),(5,38,32),(6,39,33),(7,40,34),(8,41,35),(9,42,36),(10,21,47),(11,22,48),(12,23,49),(13,24,50),(14,25,51),(15,26,52),(16,27,53),(17,19,54),(18,20,46)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,28,37),(2,32,44),(3,36,42),(4,31,40),(5,35,38),(6,30,45),(7,34,43),(8,29,41),(9,33,39),(10,21,53),(11,19,48),(12,26,52),(13,24,47),(14,22,51),(15,20,46),(16,27,50),(17,25,54),(18,23,49)], [(1,49),(2,48),(3,47),(4,46),(5,54),(6,53),(7,52),(8,51),(9,50),(10,45),(11,44),(12,43),(13,42),(14,41),(15,40),(16,39),(17,38),(18,37),(19,32),(20,31),(21,30),(22,29),(23,28),(24,36),(25,35),(26,34),(27,33)]])

39 conjugacy classes

class 1  2 3A3B3C3D3E3F···3K3L3M3N6A···6H9A···9I9J···9O
order12333333···33336···69···99···9
size127112223···318181827···276···618···18

39 irreducible representations

dim111122222366
type++++++
imageC1C2C3C6S3S3S3C3×S3C3×S3He3⋊C2He3.4S3(C32×C9)⋊S3
kernel(C32×C9)⋊S3C32.23C33C322D9C32⋊C9C32×C9C3×He3C3×3- 1+2C3×C9C33C32C3C1
# reps1122112621236

Matrix representation of (C32×C9)⋊S3 in GL6(𝔽19)

7150000
12121000
11180000
0007150
00012121
00011180
,
11100000
887000
1120000
00011100
000887
0001120
,
6014000
9015000
10613000
00017120
0002216
000530
,
7010000
008000
0112000
00011100
000081
0000120
,
000100
000010
000001
100000
010000
001000

G:=sub<GL(6,GF(19))| [7,12,11,0,0,0,15,12,18,0,0,0,0,1,0,0,0,0,0,0,0,7,12,11,0,0,0,15,12,18,0,0,0,0,1,0],[11,8,1,0,0,0,10,8,12,0,0,0,0,7,0,0,0,0,0,0,0,11,8,1,0,0,0,10,8,12,0,0,0,0,7,0],[6,9,10,0,0,0,0,0,6,0,0,0,14,15,13,0,0,0,0,0,0,17,2,5,0,0,0,12,2,3,0,0,0,0,16,0],[7,0,0,0,0,0,0,0,1,0,0,0,10,8,12,0,0,0,0,0,0,11,0,0,0,0,0,10,8,12,0,0,0,0,1,0],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;

(C32×C9)⋊S3 in GAP, Magma, Sage, TeX

(C_3^2\times C_9)\rtimes S_3
% in TeX

G:=Group("(C3^2xC9):S3");
// GroupNames label

G:=SmallGroup(486,149);
// by ID

G=gap.SmallGroup(486,149);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,338,867,873,735,3244]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^9=d^3=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*c^3,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^3,b*e=e*b,d*c*d^-1=a*b^-1*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽